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The domestication of plants and animals marks one of the most
significant transitions in human, and indeed global, history. Tradi-
tionally, study of the domestication process was the exclusive
domain of archaeologists and agricultural scientists; today it is an
increasingly multidisciplinary enterprise that has come to involve
the skills of evolutionary biologists and geneticists. Although the
application of new information sources and methodologies has
dramatically transformed our ability to study and understand do-
mestication, it has also generated increasingly large and complex
datasets, the interpretation of which is not straightforward. In
particular, challenges of equifinality, evolutionary variance, and emer-
gence of unexpected or counter-intuitive patterns all face re-
searchers attempting to infer past processes directly from patterns
in data. We argue that explicit modeling approaches, drawing upon
emerging methodologies in statistics and population genetics, pro-
vide a powerful means of addressing these limitations. Modeling
also offers an approach to analyzing datasets that avoids conclu-
sions steered by implicit biases, and makes possible the formal in-
tegration of different data types. Here we outline some of the
modeling approaches most relevant to current problems in domes-
tication research, and demonstrate the ways in which simulation
modeling is beginning to reshape our understanding of the do-
mestication process.
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The emergence of agriculture beginning some 10,000 y ago
marked more than a change in human patterns of subsistence.

The beginnings of food production ushered in an era of radically
new relationships between humans and other species, dramatic
new evolutionary pressures, and fundamental transformations
to the earth’s biosphere. The evolutionary process of plant
and animal domestication by humans led to morphological,
physiological, behavioral, and genetic differentiation of a wide
range of species from their wild progenitors (1, 2). The selection
pressures that were placed on such species continue today,
sometimes through direct genetic modification, and both the
processes and their outcomes are accordingly of significant
broader interest. Domestication is also part of a cultural evo-
lutionary process (3, 4), and some human genes have evolved in
response to cultural innovations (5–8), much as the genes of
domesticated species have changed under the impact of human
artificial selection. The study of domestication today is a multi-
disciplinary enterprise in which archaeologists and agricultural
scientists have been joined by evolutionary biologists and pop-
ulation geneticists (2, 9).

At least five major sets of questions tend to reoccur in the
domestication literature. The first three are demographic: (i)
When, where, and in how many geographic locations was a given
species domesticated? (ii) What were the dispersal routes from
the original domestication centers? (iii) To what extent did hy-
bridization between domesticates and local wild relatives occur?
The remaining questions relate to adaptation: (iv) To what ex-
tent, and how rapidly, were domestic traits fixed? (v) How well
did domesticates adapt to diverse anthropogenic environments?
Most of these questions can be at least partially addressed

using population genetic data from both ancient and modern
samples. This is because variation across the genome is shaped
by—and thus reflects—past demography, whereas genetic vari-
ation in and around particular genes determining key phenotypic
traits is shaped by adaptation history. These principles, in com-
bination with the availability of increasing quantities of ancient
and modern genetic data, have led to a profusion of studies on
particular domestication scenarios (e.g., refs. 10 and 11). How-
ever, the relationship between genetic data and the demographic
or adaptation history that shaped it is noisy and often difficult to
predict. This difficulty is primarily because: (i) in any evolving
system that includes stochastic processes, patterns in genetic (or
archaeological) data could have been generated under a range of
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different histories (equifinality); (ii) any particular history can
potentially give rise to a wide range of different patterns in data
[evolutionary variance (12)]; and (iii) certain demographic or
adaptation histories can give rise to counter intuitive patterns in
data (emergence) (e.g., refs.13–16).
Evolutionary histories are rarely directly “revealed” by looking

only at patterns in data, such as the distribution of particular
markers (e.g., morphological traits, material culture, genetic
variants). This is because such data may be only weakly con-
strained by those histories; many different histories may explain
the same data equally well. Thus, instead of simply providing
narratives based on interpretations, implicit assumptions, and
preconceived ideas, domestication histories need to be tested to
identify those scenarios that best explain observed data; to do
this, domestication histories must be modeled explicitly. We
outline a range of modeling techniques that can be used in do-
mestication research and provide examples that illustrate their
utility. Although most of the discussion and examples given in
this paper are based on population genetic data, most of the
principles and approaches can also be applied to other datasets
used to explore domestication processes.

Types of Modeling Approaches
A model is an explicit and simplified representation of the un-
derlying causative mechanisms in a system and is used to make
predictions about the observed outcomes (data) of that system.
We consider two classes of models: discriminative models, which
fit directly observed data to predicted relationships (e.g., linear
regression), and generative models, which are intended to cap-
ture the main real-world mechanisms that generate data, and are
typically used to produce artificial datasets. Discriminative models
make assumptions, sometimes but not always explicitly, on the
ways aspects of the data are correlated without specifying the
actual mechanisms that generate those correlations (e.g., refs.
17–21). Generative models aim to explicitly replicate key hypoth-
esized (i.e., assumed) processes that generate the data. Because
all evolutionary processes include stochastic elements, a range
of different outcomes—or patterns in empirical data—can be
generated from any particular scenario or model. For this reason,
when using generative models, it is often necessary to produce
many datasets by simulation.
In population genetics, a powerful means of simulating data is

the “retrospective” approach of coalescent simulation (22), where
the joining (or coalescence) of lineages is simulated backward in
time under specific assumptions about such variables as pop-
ulation size, structure, migration, and admixture. This approach
is highly efficient because it only simulates the lineage history of
the sample, not of the whole population, so simulation can be
very fast. However, coalescent approaches are limited in the
demographic and selection scenarios that can be modeled, and
some researchers instead favor a more flexible, but computa-
tionally demanding forward-in-time simulation (e.g., ref. 23), or
simulations with a combination of forward- and backward-
in-time elements (e.g., ref. 24).
Generative models can be agent-based, whereby agents with

prescribed interaction behaviors are simulated as individual
units. However, agent-based models tend to be computationally
demanding, so their application is usually restricted to revealing
some emergent, sometimes counter-intuitive, properties of a mod-
eled system (e.g., ref. 25) rather than making inferences by fitting
to existing data (e.g., ref. 26). An additional level of resolution in
evolutionary modeling can be achieved through spatially explicit
simulation, sometimes reducing continuous space to a number of
cells (or “demes”) with defined neighbor relationships. These
spatial refinements can be computationally challenging, par-
ticularly when geographic features (e.g., elevation, climate) or
population dynamics (e.g., varying carrying capacities) are
introduced.

A shared characteristic of these modeling approaches is that
they are made up of a number of components reflecting the
real-world processes that are hypothesized to have shaped the
data. These components can be explicitly modified and com-
bined with one another.

Models and Data
To be useful in evolutionary inference, models should be fitted to
observed data. Often the most important aspect of model-fitting
is deciding how to deal with unknown parameters, such as mi-
gration rates or selection coefficients.
Frequentist approaches to hypothesis testing or estimation treat

the unknown parameters as fixed; the model specifies imaginary
random repetitions of the data generation process (e.g., refs. 13,
25, 27, 28). There is therefore no probability distribution for the
parameters, but instead statements are made about the fre-
quency of future datasets satisfying certain conditions given as-
sumed parameter values. Often the data are reduced to summary
statistics (e.g., means, variances) intended to capture the most
important information about the processes modeled. One of the
simplest forms of inference is to consider the distribution of a
summary statistic under a given model in comparison with the
observed value of that statistic. This procedure can be used to
reject models or parameter values as implausible, but is not
useful for more quantitative comparisons.
Given some assumed—or known—model of the processes at

play, the parameter values that maximize the probability of ob-
serving the data can be obtained (maximum likelihood). The
main requirement of maximum-likelihood approaches is a likeli-
hood function: a mathematical formula that specifies the prob-
ability of the data as a function of the parameter values. This
function can be used in a frequentist setting, but is more com-
monly used directly to identify ranges of plausible parameter
values (e.g., refs. 29, 30). Likelihood-based (and full-Bayesian,
see below) approaches usually use the full information content of
data and not just some aspect of it, such as summary statistics.
However, (i) the likelihood function can be difficult to formulate
for anything but the simplest models, (ii) if there are many
parameters, maximizing the likelihood can be computationally
demanding, and (iii) there can be multiple maxima of the like-
lihood function.
Full Bayesian methods also make use of the likelihood func-

tion but they allow the incorporation of “prior information”
about the model parameters, which can help to focus on the most
plausible regions of parameter space. Computational techniques,
such as Markov chain Monte Carlo (MCMC), have made Bayesian
methods more tractable and more popular. A wide variety of
MCMC techniques exist. They are all “samplers” because they
sample parameter values at random from their prior or posterior
(i.e., target) distributions. More specifically, the aim of MCMC
techniques in Bayesian inference is to use prior probabilities and
the likelihood function to condition a random walk through
parameter space. This process results in the distribution of pa-
rameter values “visited” numerically approximating the posterior
distribution (i.e., the updated knowledge of the parameters given
the data). However, for large parameter spaces MCMC can still
be computationally very expensive (31, 32).
Because likelihood functions are only workable for relatively

simple models, there can be a tension between fitting more ele-
gant and powerful statistical methods assuming simplistic mod-
els, and assuming more general models that only permit crude
modes of inference. For example, in population genetics a like-
lihood-based method may only be available for a single pop-
ulation model (e.g., ref. 33), and researchers may accept this
limitation uncritically even when the data are clearly from mul-
tiple populations, or subsets of the data are selected to fit the
model [e.g., selecting DNA sequences from only one branch of
a phylogeny (34, 35)]. This uncritical acceptance will lead to
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misleading inferences unless the data-selection step is incor-
porated in the model specification.
The difficulty of computing likelihoods for all but the simplest

models has led to the development of a family of techniques
known as approximate Bayesian computation (ABC) (36, 37). In
its simplest form, ABC works by simulating data from a genera-
tive model with parameter values chosen at random from their
prior distributions. A simulation is accepted if the simulated data
resemble the observed data, and rejected otherwise, where the
“resemblance” of datasets is measured using one or more summary
statistics. The proposed parameter values that are accepted in this
algorithm form a sample from an approximation to the posterior
distribution. Thus, the approach is very similar to MCMC, with the
exception that the latter samples are from the true posterior dis-
tribution. Several variants of this process have been developed to
improve accuracy and computational efficiency (38–40). ABC
provides a framework for estimating parameters of interest and
comparing relative support for different models based on the same
data (37, 41).
The big advantage of ABC is modeling flexibility because al-

most any generative model can be used, but this comes at the
cost of only approximate answers, because ABC does not use all
of the information in the data. In addition, the accuracy of the
resulting approximation is hard to assess and choosing appro-
priate summary statistics can be difficult (42, 43). Although the
development of full-likelihood Monte Carlo methods, particu-
larly those addressing issues of statistical intractability, continues
apace (e.g., ref. 44, 45), ABC provides a useful adjunct to these
approaches (e.g., ref. 46), permitting currently intractable prob-
lems to be side-stepped, even if only temporarily. In addition,
methodologies such as ABC allow for the integration of distinct
sources of data (47). This integration will become increasingly
important as new types of data (e.g., paleoclimatic, archaeological,
genetic) accumulate and demand statistically informed compari-
son and integration. Given the many factors that are important in
shaping data patterns in domesticates, ABC provides the most
promising means of democratizing simulation modeling for the
domestication research community.

Modeling Domestication History
Explicit modeling-based studies of domestication are relatively
new and mostly confined to inference from population genetic
data, but have nonetheless begun to transform our understand-
ing of the five major domestication questions outlined above.
Here we highlight some examples in which initial inference about
domestication processes based on direct interpretation of pat-
terns in data were later demonstrated problematic when tested
using modeling approaches.

When, Where, and in How Many Geographic Locations Was a Given
Species Domesticated?A common but questionable interpretation
of lineage divergence date estimates for Y chromosome or mi-
tochondrial DNA (mtDNA) data are that they represent founding
events in species or populations. However, the choice of which
lineages to estimate divergence dates for can be arbitrary, and
there is little reason to expect demographic processes, such as
domestication, to correlate with lineage ages, unless those founder
events involved very small numbers of individuals; population
genetic models show that lineage coalescent dates can predate
major demographic episodes. This finding is well-illustrated with
domestic dogs; an early estimate of 135,000 y for the coalescence
age of the major mtDNA lineage (clade I, see ref. 48) was in-
terpreted as indicating a domestication founding event around
that time. More recently, modeling approaches based on diffusion
approximations (45) and the generalized phylogenetic coalescent
sampler (49), both conditioned on whole-genome sequence data,
estimated domestic dog-wolf divergence between 32,000 y ago
(50) and 11,000–16,000 y ago (51). Although these model-based

date estimates differ (most probably because of the assumed
evolutionary rate), they have concordance with those from fossil
canids currently considered morphologically more similar to
dogs than wolves (e.g., refs. 52 and 53).
Goat domestication has also been reevaluated. mtDNA se-

quences in domesticated goat have been assigned to five major
haplogroups (54), the first three of which have expansion age
estimates in the range of 10,000–841 y ago, based on DNA se-
quence mismatch distributions (55). The coalescent date esti-
mates between these haplogroups are considerably older (103,000
and 597,800 y ago) (54). Initially, these haplogroups were inter-
preted as representing independent domestication events (34, 55),
and the overall patterns of mtDNA divergence as only being
consistent with an implausibly high number of initial domes-
ticates [38,000–82,000 females (55)]. However, application of
coalescent simulation and ABC fitting to published ancient and
modern mtDNA data indicated that these data could be equally
well explained by a single domestication episode of smaller size, or
successive founding events as domestic goat populations ex-
panded into Europe (56).
The extraordinary phenotypic range of the common bean

(Phaseolus vulgaris) has made it a particularly interesting target
for domestication research (57). A range of genetic studies (e.g.,
ref. 58) indicates two highly diverged gene pools, one hypothe-
sized to originate in Mesoamerica and the other in the Andes.
Within the Mesoamerican gene pool, random amplified poly-
morphic DNA (59) and chloroplast data (60) have been inter-
preted as indicating independent domestication events. However,
using coalescent simulation and ABC, Mamidi et al. (57) showed
that single domestication episodes for both the Mesoamerican
and Andean gene pools, with strong bidirectional gene flow
between domesticated and wild species, provided the best fit to
data on 13 loci.
Modeling approaches have also altered our views of the do-

mestication of rice (30). Previous genetic studies had inferred
that rice was domesticated twice, in China and in India, giving
rise to the japonica and indica cultivars, respectively (61). When
demographic modeling using a diffusion approximation-based
approach (45) was applied to SNP data from three rice chro-
mosomes, however, only one domestication was indicated. In
conjunction with archaeological data, a more nuanced view of
rice domestication has emerged, suggesting that japonica was
domesticated in China, and that indica arose possibly as a result
of subsequent introgression of japonica into wild rice or proto-
indica populations in India (62).

What Were the Dispersal Routes from the Original Domestication
Centers? Traditionally, investigating the geographical origin and
subsequent dispersal pathways of a domesticate rely heavily on
identifying the genetically closest wild progenitor populations.
However, shifts through time in the location of such ancestral
populations, extinctions, and undersampling can all weaken
such an approach. Although application of modeling techni-
ques to the delineation of pathways of dispersal is in its in-
fancy, preliminary geospatial modeling has been conducted to
infer the dispersal of maize in the Americas (20). This approach
accounted for landscape, radiocarbon dates of crop remains, and
genetic diversity. The model-fitting was performed by multiple-
criteria regression analysis over archaeobotanical and genetic
data. This allowed tensions between archaeological and ge-
netic data to be explicitly modeled and explored, and points
the way forward for the more systematic and statistically
informed examination of dispersal pathways, particularly in
domesticates like rice, for which the geography of both do-
mestication and subsequent dispersal remains a source of signifi-
cant debate (63, 64).
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To What Extent Did Hybridization Between Domesticates and Local
Wild Relatives Occur? Gene flow from wild populations can
have important effects on patterns of genetic variation. Low Y
chromosomal diversity in modern horses has been interpreted
as the result of a single geographically restricted area of domesti-
cation (65), whereas the high diversity and low phylogeographic
structure in mtDNA has been interpreted as support for multiple
origins of domesticated horses (66, 67). Using a spatially explicit
forward simulation model, conditioned on autosomal genotype
data using ABC (68), the Western Eurasian steppe has been
identified as the most likely origin for modern horses, with a model
of repeated introgression from local wild to domesticated horses
offering the best fit to observed patterns of diversity.
Genetic interactions can be particularly complex when in-

trogression between domesticates and several related wild taxa is
possible. The cultivated apple (Malus domestica), for example,
has been proposed to derive from multiple wild relatives: most
notably Malus sieversii and Malus sylvestris, with potential con-
tribution of other taxa, such as Malus orientalis. A recent study
used demographic modeling with ABC to compare the intro-
gression scenarios between the different taxa (69). Results sup-
ported M. sieversii as the primary source of the domesticated
apple, but also with frequent and widespread introgression from
M. sylvestris, potentially contributing characters relevant for the
adaptation to novel environments and human use. In this case
modeling was essential to disentangle the biological complexity
of the domestication process, which involved at least two dif-
ferent species and repeated hybridization events over a long
period (69).

To What Extent, and How Rapidly, Were Domestic Traits Fixed?
Monophyletic patterns in phylogenetic analyses of genome-wide
markers, such as amplified fragment-length polymorphisms, have
been interpreted as indicating a rapid fixation of domestication
traits and spread of domesticates from one center (11, 70). Rapid
fixation once seemed to find confirmation in experimental field
studies (71). Increasingly, however, the archaeological record
reveals that some traits require centuries or millennia to reach
fixation (19, 72), as would be expected if those traits were de-
termined by dominant advantageous alleles. These monophyletic
patterns were investigated using an individual-based modeling
approach conditioned on amplified fragment-length polymor-
phism data from crops (13). Researchers found that both mul-
tiple and single origins of domestic crops could explain the data,
and that the multiple-origin model produced the monophyletic
signal more rapidly. Simulation also demonstrated that a mono-
phyletic signal alone need not indicate rapid fixation.

How Well Did Domesticates Adapt to Diverse Anthropogenic
Environments? An additional area of interest in domestication
studies has been how outbreeding plant systems have adapted to
the human environment in situations when there is continuous
gene-flow between wild and domesticated populations (73). Le
Thierry d’Ennequin et al. (74) used an individual-based model to
demonstrate the increased number of genes likely to be under
selection with linkage because of genome architecture and mating
strategy. Thus, some genome architectures may be more adaptable
to the domesticated environment than others. Artificial and nat-
ural selection can pull traits in opposite directions [e.g., seed size
(75)], resulting in weak selection in net effect. Such adaptation
complexity is consistent with the large number of genes (i.e., 27–70
genes) thought to underlie domestication traits in wheat, maize,
and sunflower (76–79). Furthermore, because the number of
genes that can be under selection simultaneously is constrained
(80), it is necessary to consider gene interactions in models of
adaptation (75, 81). A case in point is the adaptation of crops to

higher latitudes as they were moved out of their location(s) of
origin (82–84). A reduction in crop adaptability may have led
to population collapse in mid-Holocene Europe (85), result-
ing into regional agricultural abandonment (86).
In addition to looking at the adaptation of domesticates to

anthropogenic environments, researchers interested in the cul-
tural impact of the domestication process can also use models to
evaluate human response to culturally determined selection
pressures (87). The dietary changes, population growth, in-
creased sedentism, and new diseases that accompanied the do-
mestication of plants and animals appear to have triggered a
wave of genetically based adaptations in our own immune and
digestive systems (5, 88). The rapid increase in the availability of
human gene-sequence data are making model-driven data analysis
increasingly feasible and attractive in studies of human cultural
and genetic response to agriculture-associated innovations (e.g.,
ref. 47).

Concluding Remarks
Model-based statistical approaches are an essential tool in do-
mestication research. When inferring past processes, explicit
models are particularly important as, typically, data are the re-
sult of a single experiment (the past), and it is necessary to ex-
plore a landscape of hypotheses to test which could have given
rise to those observed data. Because the hypothesis landscape is
effectively infinite, it will always be the case that some un-
justifiably complex model can be found to explain the data well
(overfitting), so it is necessary to make explicit assumptions, to
consider simple models first, and to penalize complexity (89, 90).
These requirements are often seen by nonstatisticians as key

drawbacks of modeling approaches. However, assumptions are
always present when inferring past processes, and making them
explicit enables their recognition and evaluation. In addition, the
advantages of using simplified explicit models—particularly sta-
tistical tractability and the avoidance of overfitting—outweigh
their drawbacks. Furthermore, simple does not mean easy. To
quote George Box (91): “Just as the ability to devise simple but
evocative models is the signature of the great scientist so over-
elaboration and overparameterization is often the mark of
mediocrity.”
Because of the central role clear hypothesis formulation and

testing play in scientific research, we suggest that the arguments
presented here apply not only to the field of domestication re-
search or population genetics, but to any discipline involving
historical inference (85, 92). Modeling is not the only way to
proceed and does not guarantee the right answers [indeed,
“models are always wrong, and sometimes useful” (91)]. Like-
wise, interpretative approaches can be valuable in the scientific
process and may lead to the correct, or nearly correct, explana-
tion. However, interpretative inference is better thought of as
a means of generating hypotheses (storytelling), whereas explicit
models permit those hypotheses (or stories) to be tested. With
advances in statistical modeling techniques and increases in
computer power, the approaches discussed in this article are set
to transform our understanding of domestication processes.
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